Keyboard shortcuts

Press or to navigate between chapters

Press S or / to search in the book

Press ? to show this help

Press Esc to hide this help

5.6 Generating different GVB solutions

This section is for experienced GVB users. For conjugated molecules, there often exists multiple GVB solutions.

5.6.1 \( \sigma \) - \( \pi \) separated v.s. \( \sigma \) - \( \pi \) mixed solution

By default, the PM (Pipek-Mezey) localization method is used in constructing the initial guess of GVB orbitals. For example, if we calculate a benzene molecule,

%mem=48GB
%nprocshared=48
#p CASSCF/cc-pVDZ

mokit{}

0 1
C   -0.90252711    0.46329723    0.00000000
C    0.49263289    0.46329723    0.00000000
C    1.19017089    1.67104823    0.00000000
C    0.49251689    2.87955723   -0.00119900
C   -0.90230811    2.87947923   -0.00167800
C   -1.59990911    1.67127323   -0.00068200
H   -1.45228611   -0.48901977    0.00045000
H    1.04214089   -0.48921577    0.00131500
H    2.28985089    1.67112823    0.00063400
H    1.04271689    3.83170023   -0.00125800
H   -1.45243011    3.83176023   -0.00263100
H   -2.69951311    1.67145623   -0.00086200

we will obtain GVB(15) and CASSCF(6,6) natural orbitals, in which we can find 3 \( \pi \) bonding orbitals and 3 \( \pi \)* anti-bonding orbitals:

But if we deliberately change the orbital localization method as the Boys method:

mokit{LocalM=Boys}

then the \( \sigma \) - \( \pi \) orbitals are mixed during orbital localization, and the GVB will converge to a lower-energy solution, but with \( \sigma \) - \( \pi \) orbitals mixed. And we will probably get the complain information from automr

There is no active orbital/electron. AutoMR terminated.

The reason is this molecule has little multi-configurational or multi-reference
character...

This is because in the lower-energy GVB solution, there are no pure \( \pi \) orbitals, and the corresponding pair coefficients are totally different

   CICOEF(  1)=  0.99795122275633, -0.06397934822390
   CICOEF(  3)=  0.99795102014144, -0.06398250853672
   CICOEF(  5)=  0.99794887464558, -0.06401596358426
   CICOEF(  7)=  0.99608018865066, -0.08845483467657
   CICOEF(  9)=  0.99607885713120, -0.08846982749052
   CICOEF( 11)=  0.99607599571862, -0.08850203812992
   CICOEF( 13)=  0.99602509688574, -0.08907303954478
   CICOEF( 15)=  0.99602503059542, -0.08907378080778
   CICOEF( 17)=  0.99602141489628, -0.08911420239227
   CICOEF( 19)=  0.99591536359976, -0.09029168591829
   CICOEF( 21)=  0.99591522848545, -0.09029317621383
   CICOEF( 23)=  0.99591456661139, -0.09030047625144
   CICOEF( 25)=  0.99591440686394, -0.09030223807220
   CICOEF( 27)=  0.99591436826541, -0.09030266376197
   CICOEF( 29)=  0.99591319014626, -0.09031565585597

It shows the symmetry of 3 C-C \( \sigma \) bonds, 6 C-H \( \sigma \) bonds, and 6 \( \sigma \) - \( \pi \) mixing bonds (“banana” bonds). These pair coefficients are of less multi-reference characteristics so that automr thinks there is no strongly correlated orbitals to be picked for CASSCF calculations.

5.6.2 closed-shell-like v.s. diradical-like solution

To be added.